Gastroenterology Year in Review

Maireade McSweeney, MD, MPH 9/4/2025

Aerodigestive Center Boston Children's Hospital

Disclosures

None

Outline

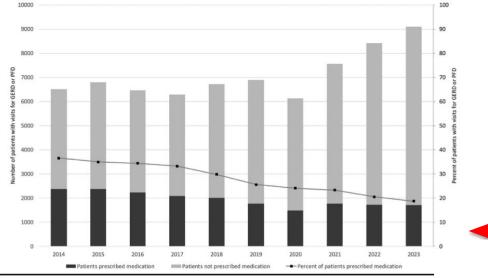
- Gastroesophageal reflux
- Eosinophilic esophagitis
- Two newly released GI guidelines
- Enteral tube feeding
- Aero "potpourri"
- Future considerations

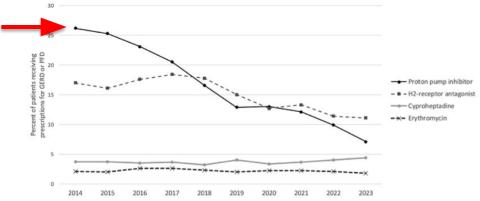
Gastroesophageal Reflux

Ten-Year Trends in Pharmacologic Management of Gastroesophageal Reflux Disease and Pediatric Feeding Disorders in Young Children

Suzanna Hirsch, MD¹, Enju Liu, MD, PhD², Samuel Nurko, MD, MPH¹, and Rachel Rosen, MD, MPH¹ *J Pediatr* 2025; 283.

- Retrospective review
- Prescription use in children </= 2 yrs with ICD-9/-10 codes: GERD and feeding disorders
- Jan 2014-Dec 2023
- N= 49,483 patients
- Excluded post-surgical, GI bleeding, or pts needing empiric antacid treatment (e.g. steroid tx)





Ten-Year Trends in Pharmacologic Management of Gastroesophageal Reflux Disease and Pediatric Feeding Disorders in Young Children

Suzanna Hirsch, MD¹, Enju Liu, MD, PhD², Samuel Nurko, MD, MPH¹, and Rachel Rosen, MD, MPH¹

J Pediatr 2025; 283.

Proton Pump Inhibitors and Risk of COVID-19 Infection in Children

Suzanna Hirsch, MD¹, Enju Liu, PhD², and Rachel Rosen, MD, MPH¹

J Pediatr 2024; 274.

- Retrospective case-control study
- Children </=21 yrs age who had a COVID-19 infection (based on PCR testing)
 - Exposures: current, past, or "never" use of PPI
- 116,209 pts with 234,867 COVID tests
- 5,540 (5%) current PPI uses, 940 (1%) past users, 109,729 (94%) non-users at time of first COVID test

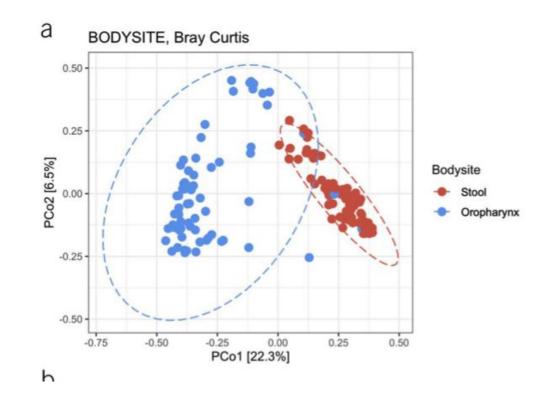
Proton Pump Inhibitors and Risk of COVID-19 Infection in Children

Suzanna Hirsch, MD1, Enju Liu, PhD2, and Rachel Rosen, MD, MPH1

J Pediatr 2024; 274.

No increased risk found with PPI use and COVID infection

	Univariable		Multivariable	
Risk factor	RR (95% CI)	P value	RR (95% CI)	<i>P</i> value
PPI use				
Nonuser	1.00		1.00	
Past user	4.48 (2.53, 7.94)	<.001	0.70 (0.40, 1.22)	.21
Current user	5.15 (3.84, 6.92)	<.001	0.85 (0.64, 1.13)	.26
Age				
0-2, % (n)	1.00			
2-5, % (n)	0.82 (0.58, 1.15)	.25	0.88 (0.65, 1.21)	.43
5-12, % (n)	0.51 (0.36, 0.72)	<.001	0.65 (0.47, 0.90)	.01
>12, % (n)	1.21 (0.92, 1.59)	.17	1.13 (0.87, 1.45)	.36
Number of comorbidities			1	
0	1.00		1.00	
1	8.75 (6.03, 12.69)	<.001	8.34 (5.73, 12.15)	<.001
2	19.83 (13.46, 29.20)	<.001	19.16 (12.98, 28.28)	<.001
3+	34.99 (25.73, 47.59)	<.001	36.49 (26.37, 50.48)	<.001

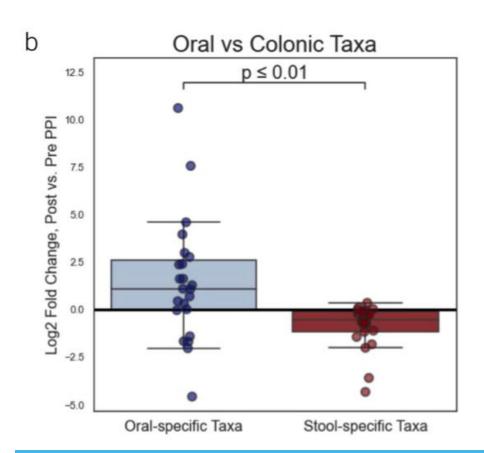


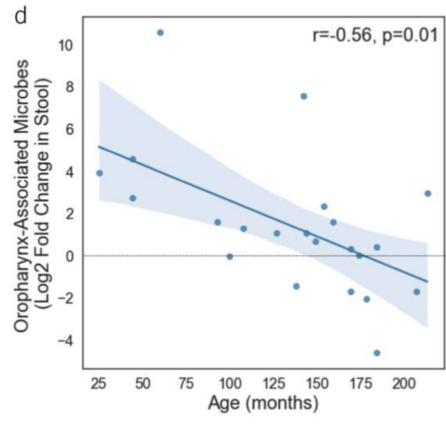
Longitudinal Microbiome Changes in Children Exposed to Proton Pump Inhibitors

Yanjia Jason Zhang, MD, PhD^{1,2}, Sarah Connearney, RN, MSN, CPNP¹, Lisa Hester, RN, BSN, CPNP¹, Maritha Du, BS¹, Andrea Catacora, BS¹, Anna Akkara, BS¹, Anna Wen, BS¹, Lynn Bry, MD, PhD^{3,4}, Eric J. Alm, PhD² and Rachel Rosen, MD¹

Clinical and Translational Gastroenteorlogy 2024; 15

- 34 patients (mean age 9.6 yrs)
- Paired samples of oropharyngeal swabs and stool samples:
 - Before PPI
 - 8 wks after startingPPI



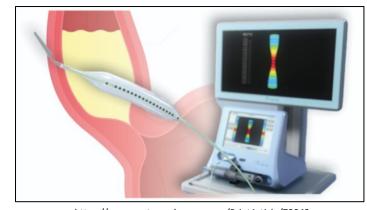


Longitudinal Microbiome Changes in Children Exposed to Proton Pump Inhibitors

Yanjia Jason Zhang, MD, PhD^{1,2}, Sarah Connearney, RN, MSN, CPNP¹, Lisa Hester, RN, BSN, CPNP¹, Maritha Du, BS¹, Andrea Catacora, BS¹, Anna Akkara, BS¹, Anna Wen, BS¹, Lynn Bry, MD, PhD^{3,4}, Eric J. Alm, PhD² and Rachel Rosen, MD¹

Clinical and Translational Gastroenteorlogy 2024; 15

Eosinophilic Esophagitis



Gastroenterology: Eosinophilic Gastrointestinal Disease

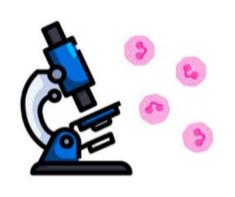
EndoFLIP distensibility index correlates with histologic findings in children with eosinophilic esophagitis

- Retrospective study comparing:
 - Validated, composite
 eosinophilic esophagitis
 histology scoring system
 (EoEHSS) vs
 - Distensibility Index from Endoluminal functional lumen imaging probe (Endoflip) vs
 - Eosinophilia counts/HPF

https://www.gastroendonews.com/PrintArticle/73043

COMPARING ENDOFLIP DISTENSIBILITY INDEX TO THE EOSINOPHILIC ESOPHAGITIS HISTOLOGY SCORING SYSTEM

The Eosinophilic Esophagitis Histology Scoring System (EoEHSS) is used to diagnose and characterize eosinophilic esophagitis (EoE)


Distensibility index at the 30 mL setting measured by EndoFLIP correlated with EoEHSS subscores indicative of esophageal remodeling

EndoFLIP may complement EoEHSS in evaluation of EoE-associated esophageal remodeling, which may occur independent of eosinophilia

- Retrospective review
- 126 EGDs, biopsies, & EndoFLIP
- Patients grouped by normal/reactive, reflux, or EoE diagnoses

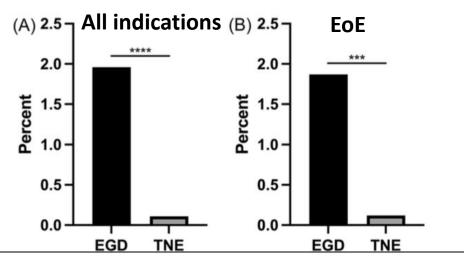
Almazan, et al. EndoFLIP distensibility index correlates with histologic findings in children with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. (2025)

JPGN 2025; 80: 824-831.

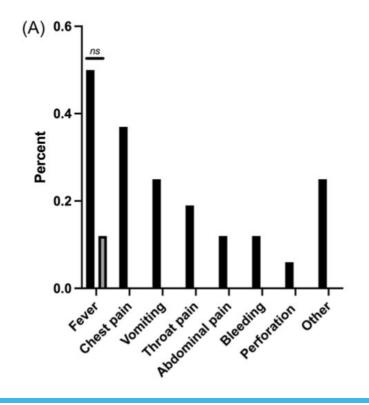
Adverse events are lower in unsedated transnasal esophagoscopy versus sedated esophagogastroduodenoscopy

```
Yeshai T. Dollin<sup>1</sup> | Jacob A. Mark<sup>1,2</sup> | Rachel Andrews<sup>2,3</sup> | Zhaoxing Pan<sup>3,4</sup> | Courtney Ort<sup>2</sup> | Robert E. Kramer<sup>1,2</sup> | Nathalie Nguyen<sup>1,2,3</sup> | JPGN 2025; 81: 140-145.
```

- Retrospective review of AE data (over 7 yrs) within 72 hrs:
 - 10,023 sedated diagnostic upper endoscopies (EGD) on 7,786 patients
 - 927 unsedated transnasal endoscopies (TNE) on 492 patients



https://gikids.org/tests-procedures/transnasal-endoscopy/



Adverse events are lower in unsedated transnasal esophagoscopy versus sedated esophagogastroduodenoscopy

 Authors noted limitation of not reporting tolerability or incomplete procedures

The mouth or the nose: the past, present, and future of ultra-slim gastroscopy of the upper gastrointestinal tract in pediatrics

Paul Tran^{1*}, Rose Lee², Ali Mencin³, Matthew Ryan⁴, Joel A. Friedlander⁵ and Michael A. Manfredi⁴

¹Division of Pediatric Gastroenterology, Phoenix Children's Hospital, Phoenix, AZ, United States, ²Division of Pediatric Gastroenterology, The Medical College of Wisconsin, Wisconsin, WI, United States, ³Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States, ⁴Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, United States, ⁵EvoEndo, Inc., Centennial, CO, United States

Frontiers in Pediatrics July 2025. Review article

Newly released GI Guidelines

North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition 2025 guidelines for management of cyclic vomiting syndrome in children

- Provides up-to-date recommendations from an expert panel on the management of cyclic vomiting
- Revision from the prior 2008 NASPGHAN consensus statement

Updated Practice Guidelines for Managing Pediatric Cyclic Vomiting Syndrome

Managing pediatric cyclic vomiting syndrome (CVS) has been challenging due to the lack of evidencebased treatment regimens

Multidisciplinary panel

Experts and a patient representative

Grading of Recommendations Assessment, Development and Evaluation Evidence-to-Decision frameworks

Evidence-based guidelines for managing pediatric CVS

Highlights of 16 recommendations for abortive (acute) and prophylactic (preventive) interventions

Strong recommendation

Abortive CVS: Anti-migraine agents (triptans, NSAIDs) for patients with a personal or family history of migraine

Conditional recommendations

Abortive CVS

Early presentation for treatment

5-HT₃ and NK-1 receptor antagonists (oral/IV)

Prophylactic CVS

Prescribe supplements and avoid triggers

Utilize biobehavioral and neuromodulation interventions

Prophylactic pharmacological

β-blockers, NK-1 and 5-HT_{2A} receptor antagonists

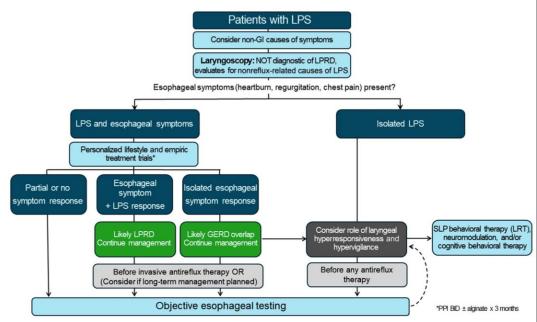
Tricyclic antidepressants for refractory cases

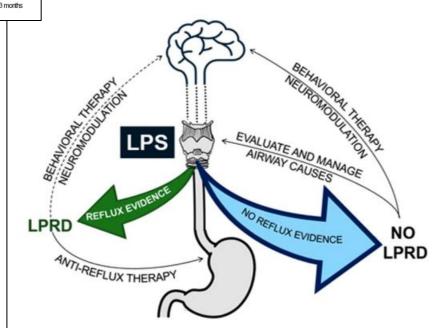
5-HT,: 5-hydroxytryptamine 3; NK-1: Neurokinin-1; IV: Intravenous; 5-HT,: 5-hydroxytryptamine 2A; NSAIDs: Non-steroidal anti-inflammatory drugs

The updated evidence-based guidelines for pharmacological and non-pharmacological

Karrento, et al. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition 2025 g management of cyclic vomiting syndrome in children. J Pediatr Gastroenterol Nutr. (2025)

The San Diego Consensus for Laryngopharyngeal Symptoms and Laryngopharyngeal Reflux Disease


Rena Yadlapati, MD, MS, MSHS, FACG¹, Philip Weissbrod, MD², Erin Walsh, CCC-SLP, IBCLC, BCS-S², Thomas L. Carroll, MD, PhD³, Walter W. Chan, MD, MPH, FACG⁵, Jackie Gartner-Schmidt, PhD, CCC-SLP6, Livia Guadagnoli, PhD², Marie Jette, PhD8, Jennifer C. Myers, PhD9, Ashli O'Rourke, MD, MS¹0, Rami Sweis, MD, PhD¹1, Justin Wu, MD¹2, Julie M. Barkmeier-Kraemer, PhD, CCC-SLP¹3, Daniel Cates, MD², Chien-Lin Chen, MD, PhD¹4, Enrique Coss-Adame, MD¹5, Gregory Dion, MD¹6, David Francis, MD, MS¹7, Mami Kaneko, PhD¹8, Jerome R. Lechien, MD, PhD, MS¹9, Stephanie Misono, MD²0, Anais Rameau, MD²1, Sabine Roman, MD, PhD²2, 23,24, Anne Vertigan, PhD²5,26,27, Yinglian Xiao, MD²8, Frank Zerbib, MD, PhD²9, Madeline Greytak, BA¹, John E. Pandolfino, MD, MS, MSCI, FACG6 and C. Prakash Gyawali, MD, FRCP, FACG³0


- LPS refer to chronic and frequent throat and upper airway
- Laryngoscopy is a necessary part of evaluation of LPS to assess for other nonreflux-related otolaryngologic processes including malignancy; however, LPRD cannot be diagnosed based on laryngoscopy findings alone.
 - A diagnosis of LPRD requires chronic troublesome LPS and objective evidence supporting the relationship between symptoms and gastroesophageal reflux.
 - The presence of LPS does not equate to LPRD.

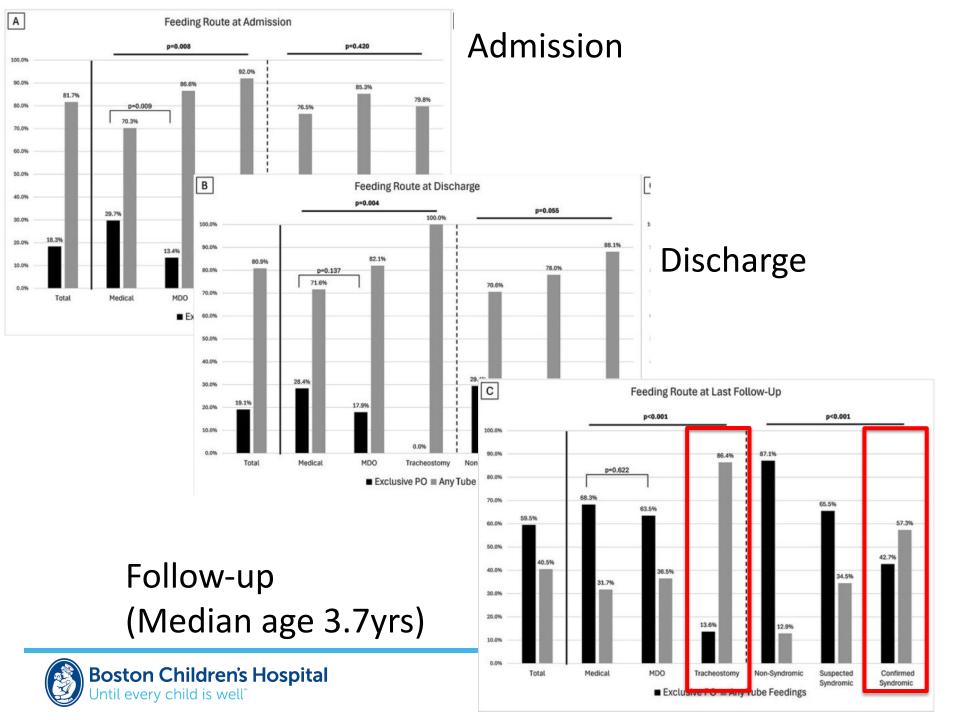
American J Gastroenterol. April 2025.

American J Gastroenterol. April 2025.

Enteral Tube Feeding

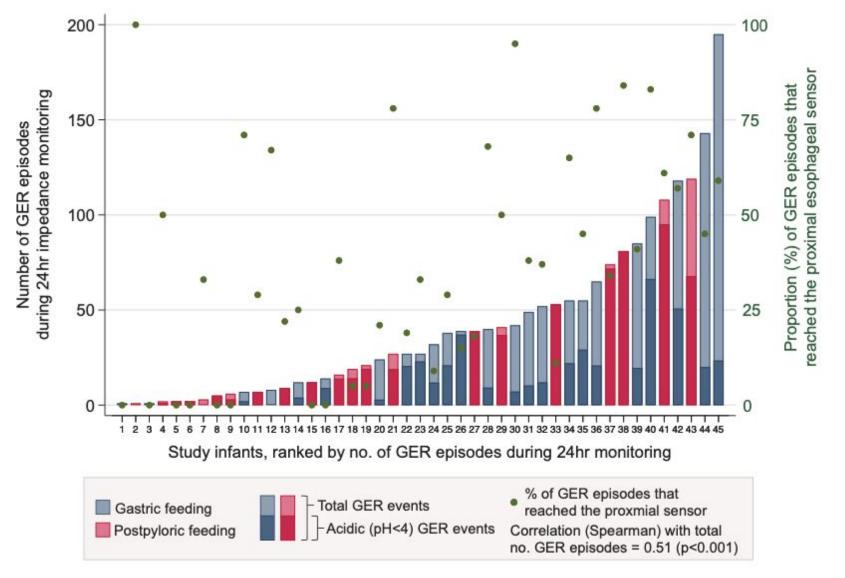
Short-term and four-year feeding and respiratory outcomes of infants with micrognathia

Kuan-Chi Lai (1) 1,2 1,2 Laura M. Walker³, Kevin Moran¹, Jordan W. Swanson⁴, Jesse A. Taylor⁴, Janet Lioy¹ and Christopher M. Cielo⁵


© The Author(s) 2025

J Perinatology. 2025. 45: 1119-1128.

- Retrospective study
- 218 infants (<1yr age) admitted with congenital micrognathia
- Outcomes of micrognathia treatment (medically managed, mandibular distraction osteogenesis, or tracheostomy)
 - Longer term tube feeding needs
 - Whether a genetic syndrome was present


Gastroesophageal reflux during postpyloric versus gastric tube feeding in preterm infants with bronchopulmonary dysplasia

Erik A. Jensen ^{1™}, Carolyn M. Orians¹, Kathleen Gibbs¹ and Matthew Ryan² J Perinatol. April 2025

- Prospective study
- 45 infants in NICU diagnosed with bronchopulmonary dysplasia (BPD) and enterally fed
 - 21 postpyloric
 - 24 gastric fed
- Compared pH-MII monitoring outcomes in infants postpyloric vs gastric fed

J Perinatol. April 2025

Gastroesophageal reflux during postpyloric versus gastric tube feeding in preterm infants with bronchopulmonary dysplasia

Erik A. Jensen ^{1 ™}, Carolyn M. Orians¹, Kathleen Gibbs¹ and Matthew Ryan²

Result	Gastric feeding (n = 24)	Postpyloric feeding ($n = 21$)	<i>p</i> -value ^a
Impedance analysis			
Total no. reflux episodes, n	40 (19–60)	16 (5–41)	0.07
>70 reflux episodes, n (%)	5 (20.8)	4 (19.0)	1.0
>100 reflux episodes, n (%)	3 (12.5)	2 (9.5)	1.0
Proportion of reflux episodes reaching the proximal sensor, %	40 (20–66)	29 (5–50)	0.28
Time proximal sensor exposed to reflux, min	0.77 (0.16–1.8)	0.1 (0.005-0.6)	0.045
Proximal reflux index, %	0.05 (0.01-0.13)	0.007 (0.0003 0.04)	0.04
Proportion of impedance reflux episodes with pH < 4, %	31 (16–54)	91 (70–100)	<0.001
pH probe analysis (pH < 4)			
Total no. of pH only episodes, n	37 (14–59)	55 (21–96)	0.35
Total reflux time, min	45.5 (12.8-79.2)	55.0 (27.2–101.4)	0.39
Acid reflux index, %	2.9 (1.0-5.8)	3.7 (1.9–7.2)	0.29
Acid reflux index >7%, n (%)	4 (16.7)	6 (28.6)	0.48
Acid reflux index >10%, n (%)	4 (16.7)	4 (19.0)	1.0

J Perinatol. April *2025*

Evaluating gastric emptying in pediatric patients with prior gastrostomy: A retrospective cohort study

- Retrospective review
- 238 patients undergoing gastric emptying study (either liquid or solid)
- Compared patients:
 - Prior g-tube placement
 - No prior g-tube placement

JPGN. Aug 2025

Evaluating gastric emptying in pediatric patients with prior gastrostomy: A retrospective cohort study

No differences in gastric emptying between patients with prior g-tube placement (vs no prior g-tube)

TABLE 2 Outcomes by prior gastrostomy status.

Variable	No prior gastrostomy ($N = 179$)	Prior gastrostomy (N = 59)	p-Value	N
Positive diagnosis of gastroparesis	38 (21.3%)	10 (16.9%)	0.466	N = 237
Presence of gastroesophageal reflux (positive)	29 (16.7%)	19 (32.8%)	0.009	N=232
GES T½	82.5 (42.1)	85 (47)	0.836	N = 233
% Gastric retention at 1 h	66 (21)	71 (28)	0.721	N = 227
% Gastric retention 1.5 h	51 (25)	52.5 (17.5)	0.932	N = 193
% Gastric retention 2 h	46 (23.5)	43.35 (34.75)	0.130	N = 118

Note: Median (IQR) values are reported. Cells highlighted in orange indicate statistical significance at p < 0.05.

Abbreviations: %, percent; GES, gastric emptying scintigraphy; IQR, interquartile range; T1/2, gastric half-emptying time.

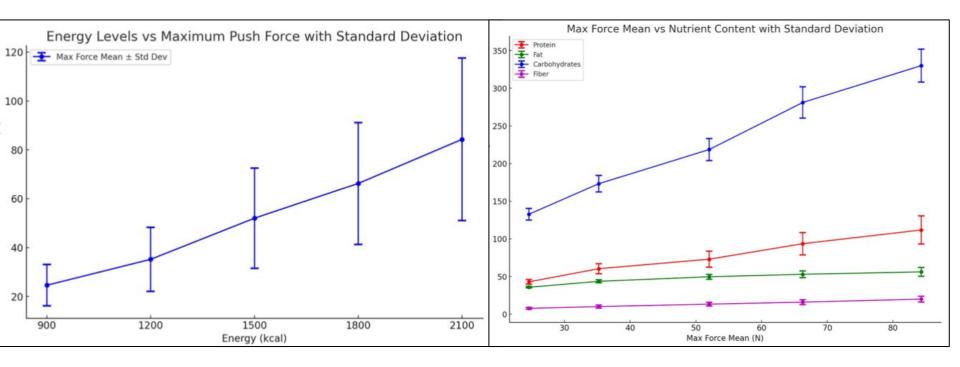
JPGN. Aug 2025

Blenderized Feeds

- Ongoing hot area of GI research
 - Home blenderized feed or commercially food based blended formulas
- >10 new articles involving "blend" and "tube" and "children" in 2025 to date!

https://gikids.org/featured/blenderized-tube-feeding/

JPGN. Mar 2025: 80 (3): 501-509



Optimizing pureed diets via texture analysis: A study on the impact of different energy levels and ingredient ratios on nasogastric tube patency

Muxi Chen@1,20, Dongyu Mu10, Yi Cheng@1, Lingli Zhang3,4, Lei Shi1, Yuan Liu1*

PLOS One. Aug 2025: 1-19

Aero "Potpourri"

Recurrent croup

Esophageal pathology and the aerodigestive triple endoscopy for pediatric recurrent croup

Stephen Liangtjan Trisno^a, Michael Carver^b, Douglas Sidell^{c,d}, Seema Khan^{a,*}

Int J Pediatr Otorhinolaryngol 2025. June: 193.

- Retrospective review of Aero center pts (Jan 2018- Oct 2024)
- 68 recurrent croup
 - 47 had dual or triple endoscopy
- 7 (14.8%) had EoE
- 9 (19.1%) had reflux esophagitis
- 1 (2.1%) had fungal esophagitis

All EoE pts had
GI symptoms
pre-procedure
and more
frequent h/o
food allergies

a Division of Pediatric Gastroenterology, Hepatology & Nutrition, Lucile Packard Children's Hospital, School of Medicine, Stanford University, CA, USA

b Department of Pediatric Gastroenterology, Children's Hospital of New Orleans, New Orleans, LA, USA

^c Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA

d Lucile Packard Children's Hospital Stanford Aerodigestive and Airway Reconstruction Center, Stanford, CA, USA

Esophageal pathology and the aerodigestive triple endoscopy for pediatric recurrent croup

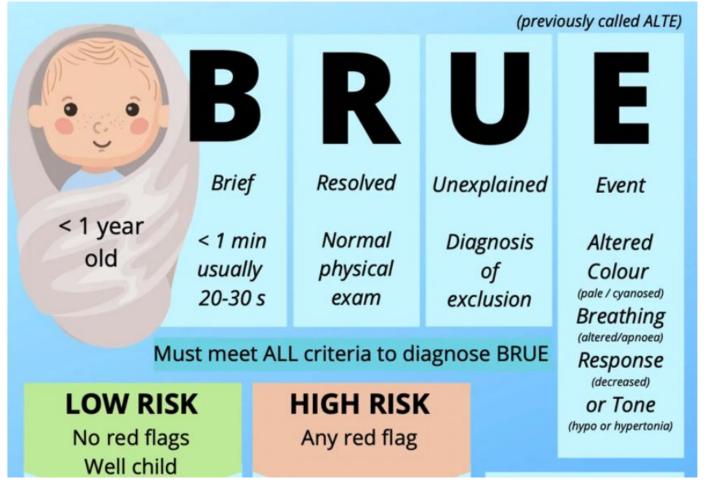
Stephen Liangtjan Trisno a, Michael Carver b, Douglas Sidell c,d, Seema Khan a,*

Int J Pediatr Otorhinolaryngol 2025. June: 193.

Results of airway portion of aerodigestive evaluation.

Characteristic	Overall $N=47^{\rm a}$	No Esophageal disease $N=30^{\rm a}$	Other Esophageal disease $N=10^{\rm a}$	Eoe $N = 7^{a}$	p-value ^b
Abnormal MDLB	39 (83 %)	26 (87 %)	7 (70 %)	6 (86 %)	0.5
Abnormal FB	34 (81 %)	21 (75 %)	8 (89 %)	4 (80 %)	>0.9
No FB performed	5	2	1	2	
Tonsillar/Adenoid hypertrophy ^c	15 (32 %)	10 (33 %)	3 (30 %)	2 (29 %)	>0.9
Glossoptosis ^c	10 (21 %)	7 (23 %)	0 (0 %)	3 (43 %)	0.078
Interarytenoid notch	12 (26 %)	8 (27 %)	3 (30 %)	1 (14 %)	0.8
Laryngeal cleft	4 (8.5 %)	3 (10 %)	0 (0 %)	1 (14 %)	0.6
Laryngeal web	1 (2.1 %)	1 (3.3 %)	0 (0 %)	0 (0 %)	>0.9
Subglottic cysts	3 (6.4 %)	2 (6.7 %)	1 (10 %)	0 (0 %)	>0.9
Subglottic stenosis	1 (2.1 %)	0 (0 %)	1 (10 %)	0 (0 %)	0.4
Subglottic shelves	7 (15 %)	4 (13 %)	1 (10 %)	2 (29 %)	0.5
Laryngomalacia	6 (13 %)	3 (10 %)	1 (10 %)	2 (29 %)	0.4
Tracheo/bronchomalacia	12 (26 %)	8 (27 %)	2 (20 %)	2 (29 %)	>0.9
Tracheal compression from artery	9 (19 %)	3 (10 %)	1 (10 %)	5 (71 %)	0.003
Vascular ring	1 (2.1 %)	0 (0 %)	1 (10 %)	0 (0 %)	0.4
Glottic/Subglottic inflammation	6 (13 %)	3 (10 %)	1 (10 %)	2 (29 %)	0.4
Tracheal/bronchial inflammation	23 (49 %)	15 (50 %)	5 (50 %)	3 (43 %)	>0.9
Pouch from TEF repair	1 (2.1 %)	1 (3.3 %)	0 (0 %)	0 (0 %)	>0.9

TEF (tracheoesophageal fistula).


a Division of Pediatric Gastroenterology, Hepatology & Nutrition, Lucile Packard Children's Hospital, School of Medicine, Stanford University, CA, USA

b Department of Pediatric Gastroenterology, Children's Hospital of New Orleans, New Orleans, LA, USA

^c Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA

d Lucile Packard Children's Hospital Stanford Aerodigestive and Airway Reconstruction Center, Stanford, CA, USA

BRUE

Outcomes for infants with BRUE diagnosed with oropharyngeal dysphagia or gastroesophageal reflux disease: a multicenter study from the Pediatric Health Information System Database

Daniel R. Duncan^{1,2} • Enju Liu^{2,3} • Clare Golden¹ • Amanda S. Growdon^{2,4} • Dionne A. Graham^{2,4} • Christopher P. Landrigan^{2,4,5} • Rachel L. Rosen^{1,2}

Eur J Pediatr 2025. Jan: 184 (2): 134.

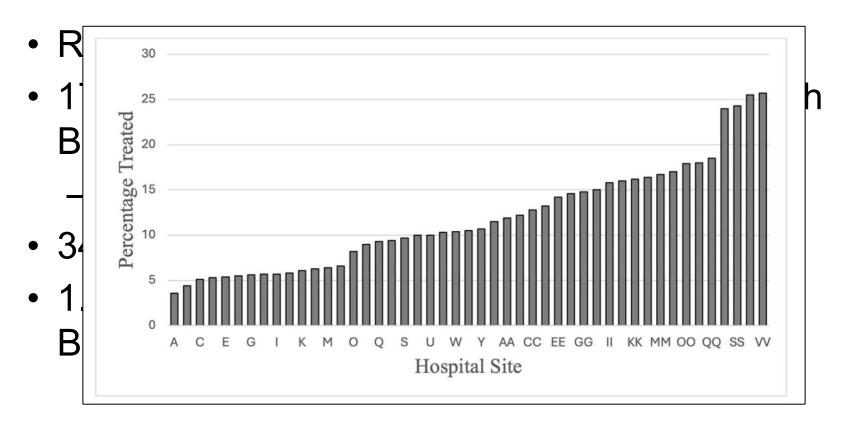
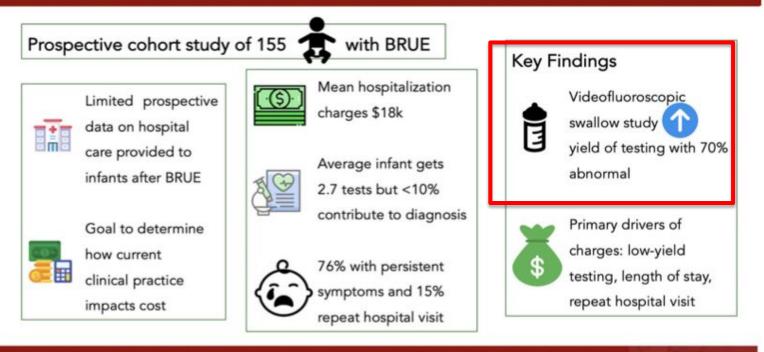


Table 4 Association between patient demographic and clinical characteristics and repeat hospital visit within 6 months of initial encounter for BRUE

	$n/N^{##}$	Univariable		Multivariable [#]				
6		Odds ratio (95% CI)	p value	Odds ratio (95% CI)	p value			
Sex					<u> </u>			
Male	820/8454	1.00		1.00				
Female	861/9104	0.97 (0.88-1.08)	0.59	0.97(0.88-1.08)	0.60			
Age	1681/17,558	0.98 (0.96-1.01)	0.14	0.98 (0.95-1.00)	0.07			
History of prematurity	maturity 171/1138 1.75 (1.47–2.07) < 0.001		< 0.001	1.46 (1.22-1.75)				
ICU admission	100/1090	0.95 (0.77-1.18)	0.64					
Length of stay								
1 night	1040/12,860	1.00						
2 nights	367/2995	1.59 (1.40-1.80)	< 0.001	1.33 (1.16, 1.51)	< 0.001			
≥3 nights	274/1703	2.18 (1.89-2.52)	< 0.001	1.39 (1.19, 1.64)	< 0.001			
Feeding consult	467/2989	2.04 (1.82-2.29)	< 0.001	1.36 (1.20, 1.56)	< 0.001			
GI consult	7/42	1.89 (0.84-4.27)	0.12					
Impedance study obtained	27/172	1.77 (1.17-2.68)	0.007	0.85 (0.55, 1.33)	0.48			
VFSS obtained	101/413	3.19 (2.53-4.01)	< 0.001	1.23 (0.94, 1.61)	0.13			
H2RA treatment	385/1734	3.20 (2.82-3.63)	< 0.001	2.08 (1.80, 2.40)	< 0.001			
PPI treatment	137/563	3.22(2.64-3.93)	< 0.001	1.88 (1.51, 2.34)	< 0.001			
Explanatory diagnosis of gas- troesophageal reflux disease	878/5933	2.34 (2.12–2.59)	< 0.001	1.66 (1.48, 1.86)	< 0.001			
Explanatory diagnosis of oro- pharyngeal dysphagia	72/238	4.24 (3.20–5.61)	< 0.001	2.13 (1.55, 2.91)	< 0.001			

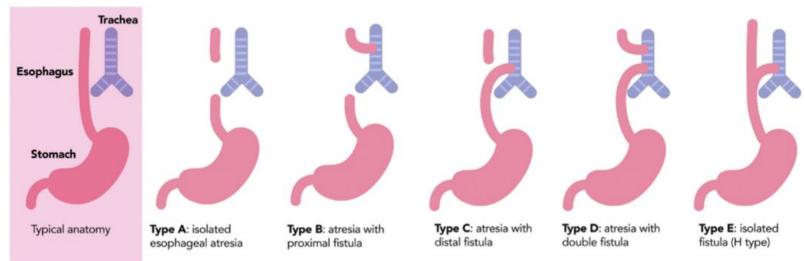
^{*}Age, sex, and variables with p < 0.05 in univariate analysis were entered into the final multivariable model

^{**} Small n's represent the number of patients with the outcome and capital N's represent the number of patients with the characteristics listed in the row


Eur J Pediatr 2025. Jan: 184 (2): 134.

A prospective study of diagnostic testing and hospital charges after brief resolved unexplained event

What are the Key Drivers of Hospital Charges after Brief Resolved Unexplained Event (BRUE)?


Duncan, et al. A prospective study of diagnostic testing and hospital charges after brief resolved unexplained event. J Pediatr Gastroenterol Nutr. (2025)

Esophageal Atresia

Khlevner J et al. Clinical Gastroenterology and Hepatology. 2023: 21: 15-25.

The prevalence of iron deficiency in pediatric esophageal atresia

JPGN. July 2025.

- Higher risk population due to poor feeding and often need for chronic antacid use
- Cross-sectional review
- 110 children with EA (ages 12-71 mos)
- To assess the prevalence of iron deficiency and iron deficiency anemia vs NHANES data

¹Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA

²School of Medicine, University of Connecticut, Farmington, Connecticut, USA

³Department of Anesthesiology, Critical Care, and Pain Medicine; Boston Children's Hospital, Boston, Massachusetts, USA

⁴Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

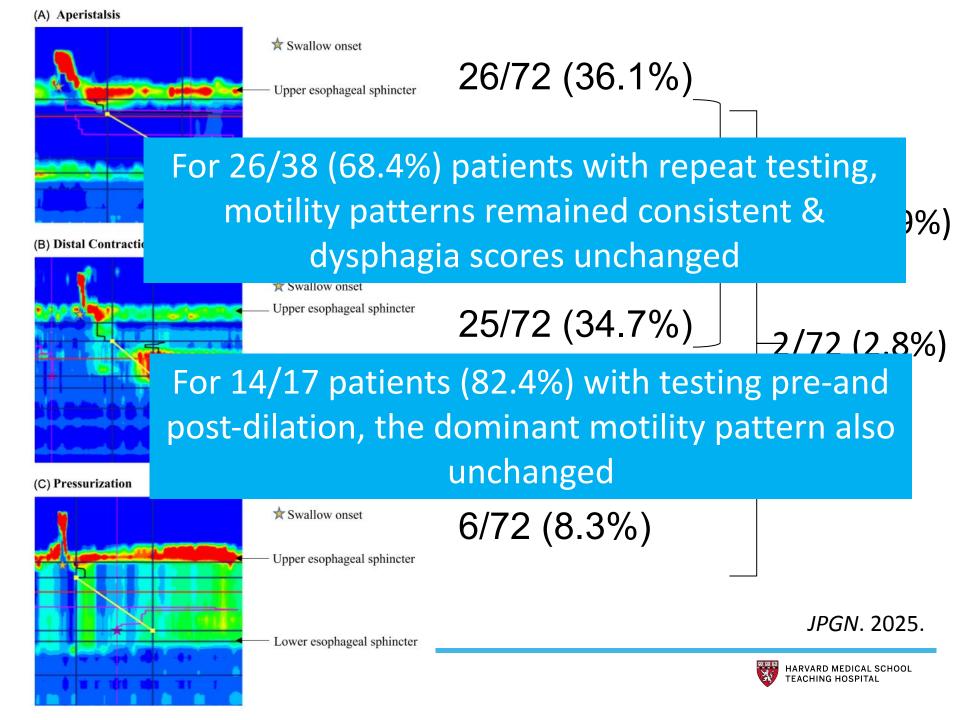
Outcome	Our cohort n = 110	General population n = 1437	p-Value	
Iron deficiency	30.9% (95% CI: 22.4%, 40.4%)	7.1% (95% CI: 5.8%, 8.6%)	<0.001*	
IDA	15.5% (95% CI: 9.3%, 23.6%)	1.1% (95% CI: 0.6%, 1.8%)	<0.001*	

Note: Prevalence of iron deficiency and IDA in esophageal atresia patients compared to general pediatric population data acquired from the National Health and Examination survey (NHANES) 2007–2010.^{4,5} p-Values were calculated using a two sample Z test for binomial populations.

Abbreviations: CI, confidence interval; IDA, iron deficiency anemia.

No differences found based on age, weight, if on acid suppression (H2 blockers or PPI), presence of erosive esophagitis, or GT fed

JPGN. July 2025.


^{*}Denote statistical significance.

Distinct and reproducible esophageal motility patterns in children with esophageal atresia

- Prospective, longitudinal study
- 75 pts < 18 yrs with EA who had high-resolution impedance manometry
 - 133 HRIM studies performed over time
 - Caregivers completed a validated dysphagia questionnaire at time of manometry
- Comparisons if manometry was done pre- and post- esophageal dilation

The Future!

https://pg-p.ctme.caltech.edu/blog/ai-ml/the-future-of-ai-a-comprehensive-guide

Parental education in pediatric dysphagia: A comparative analysis of three large language models

- Assessment of the accuracy, reliability, and readability of 3 major chatbots available on-line offering parental advice on pediatric dysphagia:
 - CHatGPT (OpenAI)
 - Copilot (Microsoft)
 - Gemini (Google)

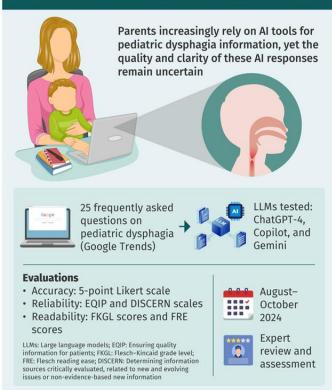


TABLE 1 LLMs' response accuracy evaluated on a Likert scale.

			ChatGPT-4 Months		Copilot Months			Gemini Months		
	Questions	Aug	Sep	Oct	Aug	Sep	Oct	Aug	Sep	Oct
1	Why do babies have difficulty swallowing?	4	4	4	4	2	3	3	3	3
2	What are the symptoms of dysphagia in babies?	5	5	5	3	2	4	4	4	4
3	What causes dysphagia in children?	3	3	3	3	3	3	3	3	3
4	How to recognize dysphagia in children?	5	5	5	4	4	4	5	4	4
5	Is difficulty sucking dysphagia?	4	4	3	4	4	4	3	4	3
6	How to feed a baby with dysphagia?	5	5	5	3	3	3	4	4	4
7	What should a child with dysphagia eat?	4	3	4	4	4	3	4	4	4
8	What should be the nutrition program for children with dysphagia?	4	4	4	4	4	4	4	4	4
9	Can a child with pediatric dysphagia eat solid foods?	4	4	4	3	3	3	4	4	4
10	Are dysphagia and milk allergy related?	4	4	4	4	4	4	4	4	4
11	Does dysphagia cause failure to gain weight?	4	4	4	3	3	4	3	2	4
12	Are dysphagia and reflux related?	4	5	4	3	5	4	5	4	5
13	Does the pediatrician take care of dysphagia?	4	4	4	2	2	2	4	4	4
14	How is dysphagia diagnosed?	5	5	5	2	2	2	4	3	5
15	Which doctor should I see for dysphagia?	3	4	3	2	3	3	3	2	3
16	What tests are performed for dysphagia?	3	4	4	3	3	3	4	4	4
17	What are the tools used in the treatment of dysphagia?	4	4	4	2	2	2	4	4	4
18	How long does dysphagia last in babies?	3	3	3	2	3	2	5	3	4
19	How to treat dysphagia in babies?	2	4	3	4	3	2	3	3	3
20	How long does it take to treat dysphagia in children?	5	5	5	2	2	2	5	5	5
21	Can a child with dysphagia go to school?	5	4	4	2	3	3	4	5	5
22	Can a child with dysphagia play sports?	5	5	5	3	4	4	5	5	5
23	What is the role of families in the treatment of dysphagia?	4	4	4	4	4	4	4	4	4
24	Is there a link between premature birth and dysphagia?	4	4	4	2	4	3	3	3	4
25	What is important to know about dysphagia?	4	3	4	3	3	3	2	2	3

Artificial Intelligence (AI) Tools for Parental Education in Pediatric Dysphagia: A Comparative Analysis

Evaluation metric (p < 0.05)	ChatGPT-4	Copilot	Gemini		
Accuracy Accuracy	✓ 4.1 ± 0.7 (best)	3.1 ± 0.7	3.8 ± 0.8		
Reliability	⊘ High	Lower	⊘ High		
Readability	Moderate	Moderate	⊘ Best		

ChatGPT-4 leads in accuracy and reliability, while Gemini excels in readability. AI tools can help educate parents, but refinement is essential for improved quality and safe use

Alyanak, et al. Parental education in pediatric dysphagia: A comparative analysis of three large language models.

J Pediatr Gastroenterol Nutr. (2025)

JPGN. 2025. 81: 18-26

My Aero ChatGPT inquiry

what's new in pediatric aerodigestive disorders in the last year

In Summary

This past year has seen meaningful progress across diagnostics, AI, imaging, pharmacotherapy, and care delivery for pediatric aerodigestive disorders. Are you interested in diving deeper into any specific area—such as AI diagnostics, feeding programs in your region, or medication management?

Let me know, and I'd be happy to explore further!

Thank you!

